REVIEW: EQUILIBRIUM, Keq, Reaction rates

REVERSIBLE REACTION : a reaction	where the reactants form the products, then the products re-form the reactants
can proceed in	
* represented by	in the equation
GENERALIZED EQUILIBRIUM RXN	$: A + B \leftrightarrow C + D$
$A + B \rightarrow C + D$ (forward/reverse) $C + D \rightarrow A + B$ (forward/reverse)	
EQUILIBRIUM CONSTANT EXPRES	SION (Keq)
$n A + m B \leftrightarrow e C + f D$	
lowercase letters (n, m, e, f) represent	
CAPITAL LETTERS (A, B, C, D) represen	nt
Keq = [][]	
[][]	
[] means "	of"
$Keq = [\underline{side}]$	
[side]	
Be careful when writing the Keq:	*Do NOT includeorin Keq expressions.
EQUILIBRIUM CONSTANT Write th	ne Keq expressions for the reactions below. NOTE: Balance the equations first.
1.) $N_{2(g)} + H_{2(g)} \leftarrow \rightarrow NH_{3(g)}$	
2.) $KCIO_{3(s)} \leftarrow \rightarrow KCI_{(s)} + O_{2(g)}$	
3.) $H_2O_{(i)} \leftarrow \rightarrow H^{+1}_{(aq)} + OH^{-1}_{(aq)}$	1 (aq)
4.) $CO_{(g)} + O_{2(g)} \longleftrightarrow CO_{2(g)}$	
5.) $\text{Li}_2\text{CO}_{3 \text{ (s)}} \leftarrow \rightarrow \text{Li}^{+1}_{(aq)} + \text{CO3}^{-1}$	2 (22)
LE CHATELIER'S PRINCIPLE	(dq)
	essed the system
~ Changes in PRESSURE ** only af	,
	<u></u>
6. $N_{2(g)} + 3 H_{2(g)} \leftrightarrow 2 NH_{3(g)}$	
If the pressure on this system incre	ases, the shift in equilibrium will be towards the side because
a. If the pressure on this system de because	creases, the shift in equilibrium will be towards the side
b. If [N ₂] increases, equilibrium shif will be towards	t will be towards $_$ side. If [NH $_3$] increases, equilibrium shift side.
c. If [H ₂] decreases, equilibrium shi will be towards	ft will be towards side. If [NH3] is removed, equilibrium shift side.
10. 4 HCl _(g) + O _{2 (g)} \longleftrightarrow 2 H ₂ O	$_{(g)}$ + 2 $Cl_{2(g)}$
a. If [O ₂] decreases, equilibrium shi	ft will be towards side. [HCl] inc/dec [H ₂ O] inc/dec
[Cl ₂] inc/dec	
b. If [H ₂ O] increases, equilibrium s [Cl ₂] inc/dec	hift will be towards side. [HCl] inc/dec [O ₂] inc/dec

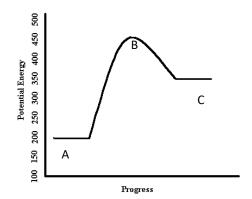
6: $2 H_2 O_{(q)} \leftarrow \rightarrow 2 H_{2(q)} + O_{2(q)} + 16 \text{ kcal heat}$

If the temperature is increased, equilibrium shift will be towards ______ side.

7: $NO_{(q)} + Cl_{2(g)} \longleftrightarrow$ 2 $NOCl_{(g)}$ -77 kJ energy

If the temperature on this system is increased , the equilibrium will shift towards the _____side.

Changes in Keq VALUE


8a. Only changes in	_affect the Keq value. If heat is added to start a reaction The er	าer-
gy will be (+/-) it is located on the _	side of the equation. it is an (endothermic/	
exothermic) reaction. So, If the temp	perature increases, the value of Keq will	
8b. If heat is given off by a reaction	. The energy will be (+/-) it is located on thes	side
of the equation. it is an (endothermic	c/exothermic) reaction. If the temperature increases, the value of K	eq
will		

Reaction rates

- When 2 molecules collide what circumstances need to occur for the molecules to react?
- 2. What does the activation energy of the reactants tell you?

Use the collision theory to explain 3-6:

- 3. Increasing the concentration of the reactant usually increases the rate of the reaction.
- 4. Increasing the temperature usually increase the rate of the reaction.
- 5. Increasing the surface area of the reactants increases the reaction rate.
- 6. Pressure on gaseous reactants can increase the reaction rate.
- 7. Adding a catalyst affects the activation energy and increases the rate of the reaction. (true/false)
- 8. On the diagram identify the reactants (A/B/C) The products (A/B/C) The activation energy (A/B/C)
- 9. How much energy do the reactants have? (in kJ)
- 10. How much energy do the products have?
- 11. How much energy is required to activate the reaction?
- 12. Is the reaction exothermic or endothermic? (+/- energy)
- 13. Draw what the graph would look like if a catalyst was added.

